
F# Cheatsheet
This cheatsheet glances over some of the common syntax of
F# 3.0. If you have any comments, corrections, or suggested
additions, please open an issue or send a pull request to
https://github.com/dungpa/fsharp-cheatsheet.

Comments
Block comments are placed between (* and *). Line
comments start from // and continue until the end of the line.

(* This is block comment *)

// And this is line comment

XML doc comments come after /// allowing us to use XML
tags to generate documentation.

/// The ‘let‘ keyword defines an (immutable) value
let result = 1 + 1 = 2

Strings
F# string type is an alias for System.String type.

/// Create a string using string concatenation
let hello = "Hello" + " World"

Use verbatim strings preceded by @ symbol to avoid escaping
control characters (except escaping " by "").

let verbatimXml = @"<book title=""Paradise Lost"">"

We don’t even have to escape " with triple-quoted strings.

let tripleXml = """<book title="Paradise Lost">"""

Backslash strings indent string contents by stripping leading
spaces.

let poem =
"The lesser world was daubed\n\
By a colorist of modest skill\n\
A master limned you in the finest inks\n\
And with a fresh-cut quill."

Basic Types and Literals
Most numeric types have associated suffixes, e.g., uy for
unsigned 8-bit integers and L for signed 64-bit integer.

let b, i, l = 86uy, 86, 86L

val b : byte = 86uy
val i : int = 86
val l : int64 = 86L

Other common examples are F or f for 32-bit floating-point
numbers, M or m for decimals, and I for big integers.

let s, f, d, bi = 4.14F, 4.14, 0.7833M, 9999I

val s : float32 = 4.14f
val f : float = 4.14
val d : decimal = 0.7833M
val bi : System.Numerics.BigInteger = 9999

See Literals (MSDN) for complete reference.

Functions
The let keyword also defines named functions.
let negate x = x * -1
let square x = x * x
let print x = printfn "The number is: %d" x

let squareNegateThenPrint x =
print (negate (square x))

Pipe and composition operators
Pipe operator |> is used to chain functions and arguments
together. Double-backtick identifiers are handy to improve
readability especially in unit testing:
let ‘‘square, negate, then print‘‘ x =

x |> square |> negate |> print

This operator is essential in assisting the F# type checker by
providing type information before use:
let sumOfLengths (xs : string []) =

xs
|> Array.map (fun s -> s.Length)
|> Array.sum

Composition operator » is used to compose functions:
let squareNegateThenPrint’ =

square >> negate >> print

Recursive functions
The rec keyword is used together with the let keyword to
define a recursive function:
let rec fact x =

if x < 1 then 1
else x * fact (x - 1)

Mutually recursive functions (those functions which call each
other) are indicated by and keyword:
let rec even x =

if x = 0 then true
else odd (x - 1)

and odd x =
if x = 1 then true
else even (x - 1)

Pattern Matching
Pattern matching is often facilitated through match keyword.

let rec fib n =
match n with
| 0 -> 0
| 1 -> 1
| _ -> fib (n - 1) + fib (n - 2)

In order to match sophisticated inputs, one can use when to
create filters or guards on patterns:

let sign x =
match x with
| 0 -> 0
| x when x < 0 -> -1
| x -> 1

Pattern matching can be done directly on arguments:

let fst’ (x, _) = x

or implicitly via function keyword:

/// Similar to ‘fib‘; using ‘function‘ for pattern matching
let rec fib’ = function

| 0 -> 0
| 1 -> 1
| n -> fib’ (n - 1) + fib’ (n - 2)

For more complete reference visit Pattern Matching (MSDN).

Collections
Lists
A list is an immutable collection of elements of the same type.

// Lists use square brackets and ‘;‘ delimiter
let list1 = ["a"; "b"]
// :: is prepending
let list2 = "c" :: list1
// @ is concat
let list3 = list1 @ list2

// Recursion on list using (::) operator
let rec sum list =

match list with
| [] -> 0
| x :: xs -> x + sum xs

Arrays
Arrays are fixed-size, zero-based, mutable collections of
consecutive data elements.

// Arrays use square brackets with bar
let array1 = [| "a"; "b" |]
// Indexed access using dot
let first = array1.[0]

1

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html
https://github.com/dungpa/fsharp-cheatsheet
https://github.com/dungpa/fsharp-cheatsheet
http://msdn.microsoft.com/en-us/library/dd233193.aspx
http://msdn.microsoft.com/en-us/library/dd547125.aspx

Sequences
A sequence is a logical series of elements of the same type.
Individual sequence elements are computed only as required,
so a sequence can provide better performance than a list in
situations in which not all the elements are used.
// Sequences can use yield and contain subsequences
let seq1 =

seq {
// "yield" adds one element
yield 1
yield 2

// "yield!" adds a whole subsequence
yield! [5..10]

}

Higher-order functions on collections
The same list [1; 3; 5; 7; 9] or array [| 1; 3; 5; 7; 9
|] can be generated in various ways.

• Using range operator ..

let xs = [1..2..9]

• Using list or array comprehensions

let ys = [| for i in 0..4 -> 2 * i + 1 |]

• Using init function

let zs = List.init 5 (fun i -> 2 * i + 1)

Lists and arrays have comprehensive sets of higher-order
functions for manipulation.

• fold starts from the left of the list (or array) and
foldBack goes in the opposite direction

let xs’ = Array.fold (fun str n ->
sprintf "%s,%i" str n) "" [| 0..9 |]

• reduce doesn’t require an initial accumulator

let last xs = List.reduce (fun acc x -> x) xs

• map transforms every element of the list (or array)

let ys’ = Array.map (fun x -> x * x) [| 0..9 |]

• iterate through a list and produce side effects

let _ = List.iter (printfn "%i") [0..9]

All these operations are also available for sequences. The
added benefits of sequences are laziness and uniform treatment
of all collections implementing IEnumerable<’T>.
let zs’ =

seq {
for i in 0..9 do

printfn "Adding %d" i
yield i

}

Tuples and Records
A tuple is a grouping of unnamed but ordered values, possibly
of different types:
// Tuple construction
let x = (1, "Hello")

// Triple
let y = ("one", "two", "three")

// Tuple deconstruction / pattern
let (a’, b’) = x

The first and second elements of a tuple can be obtained using
fst, snd, or pattern matching:
let c’ = fst (1, 2)
let d’ = snd (1, 2)

let print’ tuple =
match tuple with
| (a, b) -> printfn "Pair %A %A" a b

Records represent simple aggregates of named values,
optionally with members:
// Declare a record type
type Person = { Name : string; Age : int }

// Create a value via record expression
let paul = { Name = "Paul"; Age = 28 }

// ’Copy and update’ record expression
let paulsTwin = { paul with Name = "Jim" }

Records can be augmented with properties and methods:
type Person with

member x.Info = (x.Name, x.Age)

Records are essentially sealed classes with extra topping:
default immutability, structural equality, and pattern
matching support.
let isPaul person =

match person with
| { Name = "Paul" } -> true
| _ -> false

Discriminated Unions
Discriminated unions (DU) provide support for values that
can be one of a number of named cases, each possibly with
different values and types.
type Tree<’T> =

| Node of Tree<’T> * ’T * Tree<’T>
| Leaf

let rec depth = function
| Node(l, _, r) -> 1 + max (depth l) (depth r)
| Leaf -> 0

F# Core has a few built-in discriminated unions for error
handling, e.g., Option and Choice.

let optionPatternMatch input =
match input with
| Some i -> printfn "input is an int=%d" i
| None -> printfn "input is missing"

Single-case discriminated unions are often used to create
type-safe abstractions with pattern matching support:

type OrderId = Order of string

// Create a DU value
let orderId = Order "12"

// Use pattern matching to deconstruct single-case DU
let (Order id) = orderId

Exceptions
The failwith function throws an exception of type Exception.

let divideFailwith x y =
if y = 0 then

failwith "Divisor cannot be zero."
else x / y

Exception handling is done via try/with expressions.

let divide x y =
try

Some (x / y)
with :? System.DivideByZeroException ->

printfn "Division by zero!"
None

The try/finally expression enables you to execute clean-up
code even if a block of code throws an exception. Here’s an
example which also defines custom exceptions.

exception InnerError of string
exception OuterError of string

let handleErrors x y =
try

try
if x = y then raise (InnerError("inner"))
else raise (OuterError("outer"))

with InnerError(str) ->
printfn "Error1 %s" str

finally
printfn "Always print this."

2

http://msdn.microsoft.com/en-us/library/dd233245.aspx
http://msdn.microsoft.com/en-us/library/ee353439.aspx

Classes and Inheritance
This example is a basic class with (1) local let bindings, (2)
properties, (3) methods, and (4) static members.

type Vector(x : float, y : float) =
let mag = sqrt(x * x + y * y) // (1)
member this.X = x // (2)
member this.Y = y
member this.Mag = mag
member this.Scale(s) = // (3)

Vector(x * s, y * s)
static member (+) (a : Vector, b : Vector) = // (4)

Vector(a.X + b.X, a.Y + b.Y)

Call a base class from a derived one.

type Animal() =
member __.Rest() = ()

type Dog() =
inherit Animal()
member __.Run() =

base.Rest()

Upcasting is denoted by :> operator.

let dog = Dog()
let animal = dog :> Animal

Dynamic downcasting (:?>) might throw an
InvalidCastException if the cast doesn’t succeed at runtime.

let shouldBeADog = animal :?> Dog

Interfaces and Object Expressions
Declare IVector interface and implement it in Vector’.

type IVector =
abstract Scale : float -> IVector

type Vector’(x, y) =
interface IVector with

member __.Scale(s) =
Vector’(x * s, y * s) :> IVector

member __.X = x
member __.Y = y

Another way of implementing interfaces is to use object
expressions.

type ICustomer =
abstract Name : string
abstract Age : int

let createCustomer name age =
{ new ICustomer with

member __.Name = name
member __.Age = age }

Active Patterns
Complete active patterns:

let (|Even|Odd|) i =
if i % 2 = 0 then Even else Odd

let testNumber i =
match i with
| Even -> printfn "%d is even" i
| Odd -> printfn "%d is odd" i

Parameterized active patterns:
let (|DivisibleBy|_|) by n =

if n % by = 0 then Some DivisibleBy else None

let fizzBuzz = function
| DivisibleBy 3 & DivisibleBy 5 -> "FizzBuzz"
| DivisibleBy 3 -> "Fizz"
| DivisibleBy 5 -> "Buzz"
| i -> string i

Partial active patterns share the syntax of parameterized
patterns but their active recognizers accept only one argument.

Compiler Directives
Load another F# source file into FSI.
#load "../lib/StringParsing.fs"

Reference a .NET assembly (/ symbol is recommended for
Mono compatibility).
#r "../lib/FSharp.Markdown.dll"

Include a directory in assembly search paths.
#I "../lib"
#r "FSharp.Markdown.dll"

Other important directives are conditional execution in FSI
(INTERACTIVE) and querying current directory
(__SOURCE_DIRECTORY__).
#if INTERACTIVE
let path = __SOURCE_DIRECTORY__ + "../lib"
#else
let path = "../../../lib"
#endif

3

